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APPLICATION OF CONTINUOUS THERMODYNAMICS TO 
THE STABILITY OF POLYMER SYSTEMS 
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Chemistry Department 
“Carl Schorlemmer” Technical University 
DDR-4200 Merseburg; 
Mathematics Department 
“Wolfgand Ratke” Pedagogical University 
DDR-4370 Kothen, German Democratic Republic 

ABSTRACT 

Continuous thermodynamics is a version of thermodynamics describing 
the composition of a mixture by a continuous distribution function in- 
stead of the mole fractions or weight fractions, etc. of individual com- 
ponents. In this way, continuous thermodynamics permits a simple 
treatment of phase equilibria in complex multicomponent systems con- 
taining a large number of similar species such as heavy petroleum frac- 
tions or polymer systems. In this paper, continuous thermodynamics 
is applied to the thermodynamic stability and the critical state of solu- 
tions and mixtures of polydisperse polymers. The traditional form of 
thermodynamic stability theory leading to the well-known determinant 
criteria is not applicable within the framework of continuous thermo- 
dynamics. The most convenient starting point proves to be determina- 
tion of the sign of the second-order differential of the Gibbs free energy. 
The key quantity is the lowest value of this differential, which is obtain- 
able by using Lagrangian multipliers. In this way, the spinodal and the 
critical point for the liquid-liquid equilibrium of solutions and mixtures 
of polydisperse polymers can be calculated. For polymer mixtures, these 
questions are important in studying polymer compatibility. 
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2 KEHLEN, RAETZSCH, AND BERGMANN 

INTRODUCTION 

Synthetic polymers show polydispersity with respect to the molecular 
weight M. Owing to the very large number of different species, characteriza- 
tion experiments lead only to continuous distribution functions. Ratzsch, 
Kehlen, and Bergmann [ 1-31, Salacuse and Stell [4], Gualtieri et al. [5], and 
Briano and Glandt 161 established a version of chemical thermodynamics 
based directly on such continuous distribution functions. It is called “con- 
tinuous thermodynamics” and was applied by the present authors to calculate 
the liquid-liquid equilibrium of polymer solutions [7 ,8] ,  of copolymer soh- 
tions [9, 101, and of polymer mixtures (i.e., to calculate polymer compati- 
bility) [ 1 11  . Superiority over the traditional pseudocomponent approach 
(based on splitting the continuous distribution arbitrarily into a number of 
discontinuous bars) could be shown, as has also been pointed out by Praus- 
nitz and coworkers [12]. 

To complete the results on liquid-liquid equilibrium, it is interesting to  cal- 
culate the spinodal and the critical point. These quantities can be obtained by 
applying the thermodynamic stability theory. To our knowledge, Stockmayer 
[ 131 was the first to present such results for polymer solutions. Applying a 
special expression for the real behavior, he obtained his results by a series ex- 
pansion at the critical point. Later, his results were confirmed by Koningsveld 
and Staverman [ 141 by deriving closed expressions for a special case from the 
traditional stability determinant. The contents of the present paper consist in 
establishing a version of thermodynamic stability theory adapted to the de- 
scription of a polydisperse polymer by a continuous distribution function. 

THERMODYNAMIC BACKGROUND 

In studying polymer systems, it is convenient to imagine 211 molecules to 
be divided into segments of equal size. Then, each molecular species possesses 
a characteristic segment number, and its relative amount may be specified by 
its segment fraction. Qrrespondingly, we choose as the key thermodynamic 
quantity the quotient G of the Gibbs free energy and the total amount of seg- 
ments in the phase considered. 

To investigate thermodynamic stability of a phase with given composition, 
we consider variations of this composition as described by differentials of the 

composition variables. Then, the second order differential S 2 c  (at constant 
temperature T and constant pressure P) corresponding to any given variation 

of the composition can be calculated. The sign o f S 2 c  provides information 
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APPLICATION OF CONTINUOUS THERMODYNAMICS 3 

on the stability with respect to diffusion. According to the method dating 
back to Gibbs [ 151, the stability criterion reads: 

S 2 z  > 0 

S2E 2 0 

for all variations: stable or metastable 

for all variations where the case “=” occurs: limit of 
instability (spinodal) (1) 

S 2 z  < O  for (at least) one variation: unstable 

Of course, here (and in the following) only nonvanishing variations are to be 
considered. 

In traditional thermodynamics, the composition of a phase is described by 
the mole fractions, or volume fractions, or segment fractions, etc. of individu- 
ual components i, = 1, . . . , N. Choosing the segment fraction $i, the relation 

for the second-order differential S 2 E  reads 
N-1 N-1 

i=l k = l  

with Gik = a 2 z / a $ $ $ k ,  where these and all following derivatives are to be 
formed at constant T and P. The set of the differentials & $ I ,  . . . , 6 $ ~ - 1  of 
the independent segment fractions describes the variation of the composition 
that is under consideration. According to Eq. (2), S 2 z  is a quadratic form 
with respect to these differentials, and the contents of Eq. (1) may be ex- 
pressed in the following way: The phase is stab!e or metastable if the quad- 
ratic form Eq. ( 2 )  is positive definite; the phase is unstable if the quadratic 
form is indefinite; if the phase lies on the limit of instability, then the quad- 
ratic form is positive semidefinite. 

The following statement on the coefficients Gik of the quadratic form 
may be obtained by algebra from Eqs. (1) and (2): “The homogeneous mix- 
ture is stable or metastable if the determinant 
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4 KEHLEN, RAETZSCH, AND BERGMANN 

is positive with all principal minors.” Principal minors are minors (determin- 
ants of lower order) resulting from D by neglecting rows and columns of 
equal numbers. As these conditions are not all independent, it is sufficient to 
require, for stability or metastability, 

G l l  > O ; G I I G z z  - G l z 2  >O; . .. ; D > O .  (4) 

The condition for the limit of instability, the spinodal, is 

D=O.  (5) 

The necessary relations describing the critical state may be expressed in a form 
similar to Eq. (1). They read: 

(a) S 2 E  2 0 for all variations, where the case “=” occurs 

(6) (b) S~I? = 0 j = 3  , . . . , p -  1 } for all variations fulfilling S ~ E  = 0 S P E  > o p=even  

According to Condition (a), the critical state lies on the spinodal. Condition 
(b) results from the property of the critical state to be the fusion of two co- 
existing phases, and the inequality determines the critical state to be a stable 

one. Similarly to Eq. (5). the condition S 3 E  = 0 may also be expressed in the 
form of a determinant criterion [ 151 . 

When the system considered contains only a few components, Eqs. (4) and 
(5) and the corresponding relation for the critical state provide a fair method 
for studying stability and critical properties. But for large numbers N of com- 
ponents, such as in synthetic polymers, the calculation becomes very burden- 
some (with the exception of simple 

Because the method of continuous thermodynamics, i.e., the direct appli- 
cation of continuous distribution functions in the framework of thermody- 
namics, proved to be very convenient for calculating phase equilibria for poly- 
mer systems, it is obvious that this method should also be applied for stability 
considerations. But there are no continuous determinants and also no other 
analogous mathematical quantities for the continuous case. Hence, the appli- 
cation of the criteria of Eqs. (1) and (6) with the help of determinants is not 
possible in the framework of continuous thermodynamics. Therefore, since 
the detailed calculation of the sign of the second-order differential S 2 c  for 
all imaginable variations of the composition is not feasible, we need a practi- 

expressions). 
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APPLICATION OF CONTINUOUS THERMODYNAMICS 5 

cable way to apply these criteria. Such a way may be found easily. By Eq. ( l) ,  

the lowest value attainable by S 2 E  proves to play the decisive role. Denoting 
that variation of the composition resulting in the minimum of S 2 z  by S $ o  
(# 0), the stability criterion may be written in the form [ 161 

> 0, stable or metastable, 

S2E(SIL0) = 0, limit of instability, 

< 0, unstable, 

and the necessary conditions for the critical state read (usually p = 4) 

(7) 

As the variation minimizing S 2 E  may also be obtained easily in the framework 
of continuous thermodynamics, these criteria provide a good way for perform- 
ing stability considerations in polymer systems. This will be demonstrated for 
polymer solutions, for polymer mixtures, and for systems containing an arbi- 
trary number of solvents and polymers. 

POLYMER SOLUTIONS 

Let us consider a Polymer B described by the distribution function WB(M) 
where M is the molecular weight. The distribution function is defined in such 
a way that W B ( M )  dM gives the segment fraction of all polymer species with 
molecular weights between M and M + dd. For treating a solution in Solvent 
A, the segment molar Gibbs free energy is given by [7, 81 (neglecting linear 
terms, which are immaterial in considering stability) 

where 'A and ~ B ( M )  are the segment numbers of the solvent and of the differ- 
ent polymer species, while $* and $B are the segment fractions of the solvent 
and of the total polymer ensemble. The first two terms are-the well-known 
Flory-Huggins expression (with x = 0) and the excess term cE describes the 
deviations with respect to such a mixture. 
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6 KEHLEN, RAETZSCH, AND BERGMANN 

Comparison of Eq. (9) with the well-known corresponding expression in 
traditional thermodynamics shows the main differences between the discrete 
and continuous treatments [ 2 ]  : 1) the discrete index i is replaced by a contin- 
uous variable (M in this case); 2 )  the segment fractions of discrete polymer 
species are replaced by a continuous distribution function; and 3) summation 
is replaced by integration. (The integration limits are the limits of the molecu- 
lar weight range in question.) 

Altogether, this means: In the discrete case,z is a function of the individ- 
ual segment fractions; in the continuous case, c is a functional with respect to 
the distribution function. A function is a mapping of numbers to numbers, 
and a furgional is a mapping of functions to numbers. In Eq. (9), a specific 
value of G (at given temperature T, pressure P, and segment fractions $ A ,  $ B )  
is assigned to each function applied for W B ( M ) .  

The composition of the polymer solution is expressed by the segment frac- 
tions $ A  and $ B  and by the distribution function WB(M). These quantities 
obey the normalization conditions 

To study stability, a variation of the composition is to be considered which 
may be described by = - 6 + ~  and by the variation 6 W B ( M )  of the dis- 
tribution function. But, according to the structure of Eq. (9),  it is not con- 
venient to operate with 6 W B ( M )  but with the expression 6 [$BWB(M)] = 
W B ( M ) ~ $ B  t $ ~ f i  WB(M) obeying the relation 

JM ~[$BwB(M)I ~ M = ~ J / B .  (1 1) 

For stability considerations on the basis of Eqs. (7) and_(8), the second- 
order differential and the higher-order differentials of c are needed. In con- 

tinuous thermodynamics, an expression for S 2 Z  analogous to Eq. ( 2 )  is ob- 
tained, where the second-order functional derivatives occur and the double 
sum is replaced by a double integral. But there exists a simpler and more 
direct way to calculate the higher-order differentials [ 161 : 
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APPLICATION OF CONTl NUOUS THERMODYNAMICS 7 

Hence,Jhe following steps are necessary to obtain the kth order differential: 
1) In the G-expression, $ A  is replaced by $ A  + t 6 $ A ,  and $BWB(M) is re- 
placed by $ B  WB(M> + t6 [$B WB(M)] . 2 )  Then, this expression is differenti- 
ated k times with respect to t .  3) Finally, t is equated to zero. An analogous 
procedure is also possible in the framework of discontinued treatment. 

Applying Eq. (1 2), we obtain Eqs. (1 3)-( 15) by very simple calculations 
from Eq. (9): 

Here E E  is assumed to be independent of the distribution function WB(M): 

zE = z E ( T , P , $ ~ ) .  This simple assumption is often made when considering 
solutions of polymers and not of oligomers. It allows a comparison with re- 
sults obtained in the traditional way. 

6 [$B  wB(M)]  0 is to be found that minimizes s ~ E .  Since we are only inter- 
ested in the sign of S 2 ?  and since S22 is homogeneous (of the second degree) 
with respect to 6 $ ~  and 6 [$BWB(M)] ,  in the minimizing quantities ~ $ A , o  
and 6 [$B WB(M)] a common factor remains undetermined. We may con- 
sider this factor to be equal to ~ $ A , o  and, hence, the task is to calculate the 

variation ti [$BWB(M)]O minimizing s 2 E  at a constant value of = t i t jA,o .  

According to Eq. (13), S 2 2  is a functional with respect to 6 [J /BWB(M)] .  
The minimum of a function is obtained by equating the derivative to zero and, 
analogously, the minimum of a functional is obtained by equating the func- 
tional derivative to zero. To distinguish it from ordinary derivatives, a func- 
tional derivative will be symbolized by D.. . ID.. .. In the case of a functional 
I of the simple form 

To apply the criteria of Eqs. (7) and (8), the variation ~ $ A , o  and 
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8 KEHLEN, RAETZSCH, AND BERGMANN 

the functional derivative DI/Dj(x) equals the ordinary derivative of  the inte- 
grand Fcf(x)) with respect t o  the functionf(x): 

for example: 

In minimizing S 2 E ,  the condition of Eq. (1 1) must also be made. This may 
be done with the help of Lagrange’s method of undetermined multipliers: The 
left-hand side of Eq. (1 1) is multiplied by a multiplier (we chose -2X) and then 

added t o  S 2 E .  Then, the functional derivative of  the resulting expression is 
formed and equated to zero: 

The result contains the multiplier which may be  determined by insertion into 
Eq. (1  1). 

In this way, we obtain from Eq. (13) 

Hence, T B ( ~ )  denotes the mass (or weight) average of  the segment number 
rg (M) .  By introducing Eq. (17) into Eq. (13), the  stability condition Eq. (7) 
results in the criterion 
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APPLICATION OF CONTINUOUS THERMODYNAMICS 9 

> 0, stable or metastable, 
RT RT a 2 E E  

= 0, limit of instability, (19) +--+- 
rB( ' )$B  a $ A Z  < 0, unstable, 

When 7~ is the upper limit of rB,  7~ is also the largest value attainable by ;B(' ), 

and the phase under consideration is stable for all distributions WB(M) if the 
relation 

is valid for all $ A  values. Metastability is also impossible in this case as it re- 
quires instability in other ranges of concentration. Since x = 0 implies 

zE 1 0 ,  Eq. (20) results in the well-known statement that a Flory-Huggins 
mixture with x = 0 is always stable. 

state Eq. (8) results in the following conditions (assumingp = 4): 
By inserting Eq. (17) into Eqs. (1 4) and (1 5 ) ,  the criterion for the critical- 

In the more general case (the number p is not restricted to 4), we obtain 

j = 2 , 3  ,..., p-1 ,  (2 4) 
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10 KEHLEN, RAETZSCH, AND BERGMANN 

Equations (2 1 ) and (22) were presented earlier b y  Stockmayer [ 131 and 

by Koningsveld and Stavernian [ 141 for special E E  expressions. The agree. 
ment confirms the method applied here, which proves t o  be simpler and 
more general. 

POLYMER MIXTURES 

For a mixture of  two polydisperse polymers, A and B, described by  the 
distribution functions W A ( M )  and WB(M) ,  the treatment becomes similar 
t o  that presented above. When $ A  and $ B  are the segment fractions of the 
total p o l y m g  ensembles A and B, respectively, the segment-molar Gibbs 
free energy G reads [7] (again neglecting linear terms) 

Each polymer is treated as a continuous ensemble, but one polymer with re- 
spect to the other is treated in the well-known discontinuous manner. 

The differentials may be obtained by a procedure analogous t o  Eq. (12). 
Assuming again t o  be independent of the distribution functions W A ( M )  

and WB(M),  i.e., E E  = c E ( T , P , $ A ) ,  the differentials follow analogs of Eqs. 
(13)-(15) except that, in all cases, the first term has the same form as the 
second one (only replacing B by  A). 

To apply the criteria for stability and for the critical state, Eqs. (7) and 
(8), the variation 6 [$A wA(M)] 0 . 6  [$B WB(M)] 0 has t o  be found that mini- 
mizes S 2 z .  Again a common factor remains undetermined, which we choose 

t o  be & $ A  = - 6 $ ~ .  In minimizingh2G, two additional conditions have t o  
be met:  Eq. (1 1) and the corresponding relation for Polymer A. Hence, the 
minimizing variation (obtained from the functional derivatives with respect 

responding relation for  Polymer A. Hence, the stability criterion Eq. (7) 
results in 

to 6 [ $ A  U'A(M)] and to 6 [$B wB(M)] ) iS given by  Eq. (17) and b y  the COT- 
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APPLICATION OF CONTINUOUS THERMODYNAMICS 1 1  

> 0, stable or metastable, 
RT a 2 E E  

= 0, limit of instability, ( 2 7 )  +-t- 
RT 

- 
r g ( ' ) $ B  a $ A 2  

< 0, unstable. 

Again, the additional statement follows that the phase under consideration 
is stable for all distributions W A ( M )  and W B ( M )  if the relation 

is fulfilled for all $ A  values. From Eq. (8), the following necessary criterion 
for the critical state is obtained for p = 4: 

Again, these relations may be obtained from the corresponding equations for 
polymer solutions, Eqs. (21)-(23), by assigning to the first term the same form 
as the second one. This statement is also valid in the more general case p > 4, 
i.e., the corresponding relations may be obtained by this procedure from Eqs. 
(24) and (25) .  Equations ( 2 9 )  and ( 3 0 )  were presented by Koningsveld and 
Kleintjens [ 171 in the framework of traditional thermodynamics. 

MIXTURES CONTAINING SEVERAL SOLVENTS 
AND SEVERAL POLYMERS 

Let 1, . . . , I be several solvents (individual components) and 1 + 1, . . . , N 
be several polymers (ensembles) described by the distribution functions 
Y+1(M), . . ~ ,  WN(M).  Neglecting linear terms, the segment-molar Gibbs 
free energy c reads [7] 
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12 KEHLEN, RAETZSCH, AND BERGMANN 

Generalizing the procedure of Eq. (12), differentials of any order may be 
does not depend on the distribu- easily calculated. The assumption that E 

tion functions, i.e., cE = E E ( T , P , $ l , .  . . , $ I , $ I + ~ ,  . . . , $ ~ - 1 ) ,  leads to 
- 

To obtain the criteria for stability and critical state, we have to look for 
the variation that minimizes S2E.  It proves convenient to perform this task 
in two steps: we first search for the variations 6 [$[+I  W I + ~ ( M ) ]  0, . . . , 

s [JIN w N ( M ) ]  0 minimizing s 2 E  at constant ~ $ 1 ,  . . . , 6 $ N ;  and then we cal- 

culate the variations S $2 ,o, . . . , S $ N , O  minimizing S 2  at a constant S $ 1 = 
6 $ 1 , 0 ,  which we choose to be the common undetermined multiplier. 

In the first step, additional conditions of the type of Eq. (1 1) for I t  1, 
. . . , N have to be met, and the result reads, in complete analogy to Eq. (17), 
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APPLICATION OF CONTINUOUS THERMODYNAMICS 13 

To perform the second step, at first ~ J / N  is eliminated according t o  ~ J / N  = 
+ $ l  + t & J / N - ~ ) .  In this way, we obtain from Eq. (33) and Eq. (36) ,  

with 

where 6 i k  = 1 if i = k and 6 j k  = 0 if i # k ,  and 
if i is an individual component. The minimizing procedure leads to  

= ri for i = 1, . . . , 1, i.e., 

with an arbitrary value 6$l  #O. The determinant D' is given by 

G22 G23 . . .  G2Jv-1 

G32 G33 . . .  G 3 , N - 1  

G N - 1 , 2  C N - 1 , 3  ' . . GN-1,N-1  

and the determinant Di' results from D' by replacing the elements Gki by 
G k l  ( k = 2 ,  . . . ,  N -  1). 

From Eqs. (37) and (40), the stability criterion Eq. (7) results in the state- 
ment: "The homogeneous mixture is stable or metastable if the determinant 

D =  
G11 G12 . . .  G1 ,N-1  

G2 1 G2 2 ... G 2 , N - 1  

G N - 1 , l  G N - 1 , 2  . . .  GN-i  , N - I  
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14 KEHLEN, RAETZSCH, AND BERGMANN 

is positive with all principal minors." This is equivalent t o  the conditions 

The criterion for the limit of instability (spinodal) reads 

D = O  (43) 

Equations (37) and (41)-(43) look very similar to Eqs. (2)-(5). But in 

Eqs. (2)-(5) the quantities Gik are given by Gik = a2E//a+i a G K  = 

RTGik/ri$i tRT/rN+N t a 2 F / a $ i a $ k ,  where i and k indicate solvents or dis- 
crete polymer species. In contrast, in Eqs. (37) and (39)-(43), Gik is defined 
by Eq. (38), i.e., the indices i and k refer to solvents or to  total polymer en- 
sembles; and for such ensembles, the mass average $ l )  of the total ensemble 
occurs in Gik, instead of the segment number ri of an individual species. 

Eliminating 6 $ ~ ,  the result reads 
To discuss the critical state, we first apply Eq. (36) to Eqs. (34) and (35). 

with 

i . k , m  , n = l , . . . ,  N-1 ,  (47) 

where for i = 1 ,  . . . , I ,  i.e., for individual components, 60.) = rij  leading to 
$ 2 ) / [ $ 1 ) ]  = l / r i  and to q3)/[4(')l4 = l /r ; .  Applying Eq. (39) with the 
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APPLICATION OF CONTINUOUS THERMODYNAMICS 15 

additional definition D 1  ’ = -D’, the necessary criterion Eq. (8) for the critical 
state results in (assumingp = 4) 

Equation (48) is the relation for the spinodal and equivalent to Eq. (43). Also, 
Eq. (49) may be rewritten in the form of a determinant criterion: 

D1 0 2  . . .  D N - l  

G21 G22 . . .  c2 ,N-1 = O  

This determinant results from the determinant D as defined by Eq. (41) by 
replacing the first line (or an arbitrary other line) by the quantities D1, 
. . . , D N - ~ .  These quantities are obtained from the determinant D by “ex- 
tended” differentiation with respect to J/ 1 ,  . . . , $ ~ - 1 ,  respectively, account- 
ing for the relation $ N  = 1 - ($1 t --. t $ ~ - l ) .  The word “extended” 
means: When differentiating an element Gik as defined by Eq. (38), in the 
first two terms, in addition to the differentiation with respect to J / i ,  the 
factors and l / i , , ( * )  are to be replaced by 6(2 ) / [< (1 ) ]  and 
F N ‘ 2 ’ / [ F N ( 1 ) ]  3 .  Hence, “extended” differentiation of an element Gik with 
respect to $ in  yields Gikm withm = 1 , .  . . , N -  1. 

Of course, the “extension” is not relevant for individual components for 
which the discussed factors are identical. If only individual components are 
present, the “extension” becomes meaningless as then Di = aD/a$i; i = 1, 
. . . , N - 1 and Eq. (5 1) be,comes identical with the well-known criterion 
dating back to Gibbs [15] .  
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In a forthcoming paper the generalization of the treatment presented to  

more sophisticated z E  expressions which depend additionally on  the distribu- 
tion function(s) will be discussed. 
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